Te Whare Wãnanga o Otāgo

Refrigerative

Dehumidifier Research

Background

Moist-air in

$M E R_{E C} \sim 26 \% M E R_{\text {TOTAL }}$

Plate Heat Exchanger

PHE design

Fabrication

Polymer benefits: lighter; low-cost.

Metal PHE (Control)

Polymer (PLA) PHE part

PHE - Dry Operating Conditions

$R_{\text {HSI }}=60 \%$ in all tests.

PHE - Wet Operating Conditions

$\mathrm{RH}_{\mathrm{HSI}}=80 \%$ in all tests.

3D Printed Surfaces - Micropatterns

Lowrey, S., Hughes, C. and Sun, Z., 2021. Thermal-hydraulic performance investigation of an aluminium plate heat exchanger and a 3D-printed polymer plate heat exchanger. Applied Thermal Engineering, 194, p. 117060.

UNiversity
OTÄGO

3D Printed Surfaces - SEM Imaging

Conclusions

- Polymer PHE has lower condensing performance than aluminium control.
- Polymer PHE has shown improvements in dehumidifier air-side gearing.
- 3D-printing provides periodic microstructure. May help improve wet PHE performance.

FUTURE WORK

- Optimise 3DP surface for maximum water shedding.
- Test 3DP PHE for improved water shedding.
- Revisit geared dehumidifier and retest with improved polymer PHE.

