

Te Whare Wānanga o Otāgo

NEW ZEALAND

Refrigerative Dehumidifier Research

Background

Plate Heat Exchanger

PHE design

- Duct width = 2 mm; duct height = 85 mm.
- Aluminium/PLA wall thickness: 1 mm
- 66 ducts (33 on HS, 33 on CS).

Fabrication

Polymer benefits: lighter; low-cost.

Metal PHE (Control)

Polymer (PLA) PHE part

PHE - Dry Operating Conditions

Lowrey, S., Hughes, C. and Sun, Z., 2021. Thermal-hydraulic performance investigation of an aluminium plate heat exchanger and a 3D-printed polymer plate heat exchanger. *Applied Thermal Engineering*, 194, p.117060.

PHE - Wet Operating Conditions

RH_{HSI} = 80% in all tests.

Lowrey, S., Hughes, C. and Sun, Z., 2021. Thermal-hydraulic performance investigation of an aluminium plate heat exchanger and a 3D-printed polymer plate heat exchanger. *Applied Thermal Engineering*, 194, p.117060.

3D Printed Surfaces - Micropatterns

Lowrey, S., Hughes, C. and Sun, Z., 2021. Thermal-hydraulic performance investigation of an aluminium plate heat exchanger and a 3D-printed polymer plate heat exchanger. *Applied Thermal Engineering*, 194, p.117060.

3D Printed Surfaces – SEM Imaging

Conclusions

- Polymer PHE has lower condensing performance than aluminium control.
- Polymer PHE has shown improvements in dehumidifier air-side gearing.
- 3D-printing provides periodic microstructure. May help improve wet PHE performance.

FUTURE WORK

- Optimise 3DP surface for maximum water shedding.
- Test 3DP PHE for improved water shedding.
- Revisit geared dehumidifier and retest with improved polymer PHE.

